Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
1.
Sci Rep ; 12(1): 1841, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35115595

RESUMO

The pecan is a salt-alkali-tolerant plant, and its fruit and wood have high economic value. This study aimed to explore the molecular mechanisms responsible for salt stress tolerance in the pecan grown under hydroponic conditions to simulate salt stress. The results showed that the photosynthetic rate (Pn) was reduced in response to salt stress, while the intercellular carbon dioxide concentrations (Ci) increased. The response of the pecan to salt stress was measured using iTRAQ (isobaric tags for relative or absolute quantitation) and LC/MS (liquid chromatography and mass spectrometry) non-targeted metabolomics technology. A total of 198 differentially expressed proteins (65 down-regulated and 133 up-regulated) and 538 differentially expressed metabolites (283 down-regulated and 255 up-regulated) were identified after exposure to salt stress for 48 h. These genes were associated with 21 core pathways, shown by Kyoto Encyclopedia of Genes and Genomes annotation and enrichment, including the metabolic pathways involved in nucleotide sugar and amino sugar metabolism, amino acid biosynthesis, starch and sucrose metabolism, and phenylpropane biosynthesis. In addition, analysis of interactions between the differentially expressed proteins and metabolites showed that two key nodes of the salt stress regulatory network, L-fucose and succinate, were up-regulated and down-regulated, respectively, suggesting that these metabolites may be significant for adaptations to salt stress. Finally, several key proteins were further verified by parallel reaction monitoring. In conclusion, this study used physiological, proteomic, and metabolomic methods to provide an important preliminary foundation for improving the salt tolerance of pecans.


Assuntos
Carya/metabolismo , Metaboloma , Metabolômica , Proteínas de Plantas/metabolismo , Proteoma , Proteômica , Tolerância ao Sal , Plantas Tolerantes a Sal/metabolismo , Dióxido de Carbono , Carya/genética , Carya/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Fotossíntese , Proteínas de Plantas/genética , Mapas de Interação de Proteínas , Salinidade , Plantas Tolerantes a Sal/genética , Plantas Tolerantes a Sal/crescimento & desenvolvimento , Solo
2.
Int J Mol Sci ; 22(21)2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34769244

RESUMO

Mesembryanthemum crystallinum L. (common ice plant) is an edible halophyte. However, if ice plants are used to phytoremediate salinity soil, there are problems of slow initial growth, and a long period before active NaCl uptake occurs under higher salinity conditions. Application of endophytic bacteria may improve the problem, but there remain gaps in our understanding of how endophytic bacteria affect the growth and the biochemical and physiological characteristics of ice plants. The aims of this study were to identify growth-promoting endophytic bacteria from the roots of ice plants and to document the metabolomic response of ice plants after application of selected endophytic bacteria. Two plant growth-promoting endophytic bacteria were selected on the basis of their ability to promote ice plant growth. The two strains putatively identified as Microbacterium spp. and Streptomyces spp. significantly promoted ice plant growth, at 2-times and 2.5-times, respectively, compared with the control and also affected the metabolome of ice plants. The strain of Microbacterium spp. resulted in increased contents of metabolites related to the tricarboxylic acid cycle and photosynthesis. The effects of salt stress were alleviated in ice plants inoculated with the endobacterial strains, compared with uninoculated plants. A deeper understanding of the complex interplay among plant metabolites will be useful for developing microbe-assisted soil phytoremediation strategies, using Mesembryanthemum species.


Assuntos
Endófitos/metabolismo , Mesembryanthemum , Metabolômica , Microbacterium/metabolismo , Raízes de Plantas , Plantas Tolerantes a Sal , Microbiologia do Solo , Streptomyces/metabolismo , Mesembryanthemum/crescimento & desenvolvimento , Mesembryanthemum/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Plantas Tolerantes a Sal/crescimento & desenvolvimento , Plantas Tolerantes a Sal/microbiologia
3.
BMC Plant Biol ; 21(1): 489, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34696735

RESUMO

BACKGROUND: Soil salinization is causing ecosystem degradation and crop yield reduction worldwide, and elucidation of the mechanism of salt-tolerant plants to improve crop yield is highly significant. Podocarpus macrophyllus is an ancient gymnosperm species with a unique environmental adaptation strategy that may be attributed to its lengthy evolutionary process. The present study investigated the physiological and molecular responses of P. macrophyllus plants to salt stress by analyzing its photosynthetic system and antioxidant enzyme activity. We also analyzed the differentially expressed genes (DEGs) in P. macrophyllus under salt stress using RNA sequencing and de novo transcriptome assembly. RESULTS: Salt treatment significantly affected the photosynthetic system in P. macrophyllus seedlings, which decreased chlorophyll content, altered chloroplast ultrastructure, and reduced photosynthesis. The activities of antioxidant enzymes increased significantly following salt stress treatment. Transcriptome analysis showed that salt stress induced a large number of genes involved in multiple metabolic and biological regulation processes. The transcription levels of genes that mediate phytohormone transport or signaling were altered. K+ and Ca2+ transporter-encoding genes and the MYB transcription factor were upregulated under salt stress. However, the genes involved in cell wall biosynthesis and secondary metabolism were downregulated. CONCLUSION: Our research identified some important pathways and putative genes involved in salt tolerance in P. macrophyllus and provided clues for elucidating the mechanism of salt tolerance and the utilization of the salt tolerance genes of P. macrophyllus for crop improvement.


Assuntos
Cycadopsida/crescimento & desenvolvimento , Cycadopsida/genética , Estresse Salino/genética , Estresse Salino/fisiologia , Plantas Tolerantes a Sal/crescimento & desenvolvimento , Plantas Tolerantes a Sal/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas
4.
J Microbiol Biotechnol ; 31(11): 1526-1532, 2021 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-34528914

RESUMO

Suaeda australis, Phragmites australis, Suaeda maritima, Suaeda glauca Bunge, and Limonium tetragonum in the Seocheon salt marsh on the west coast of the Korean Penincula were sampled in order to identify the endophytes inhabiting the roots. A total of 128 endophytic fungal isolates belonging to 31 different genera were identified using the fungal internal transcribed spacer (ITS) regions and the 5.8S ribosomal RNA gene. Fusarium, Paraconiothyrium and Alternaria were the most commonly isolated genera in the plant root samples. Various diversity indicators were used to assess the diversity of the isolated fungi. Pure cultures containing each of the 128 endophytic fungi, respectively, were tested for the plant growth-promoting abilities of the fungus on Waito-C rice germinals. The culture filtrate of the isolate Lt-1-3-3 significantly increased the growth of shoots compared to the shoots treated with the control. Lt-1-3-3 culture filtrate was analyzed and showed the presence of gibberellins (GA1 2.487 ng/ml, GA3 2.592 ng/ml, GA9 3.998, and GA24 6.191 ng/ml). The culture filtrate from the Lt-1-3-3 fungal isolate produced greater amounts of GA9 and GA24 than the wild-type Gibberella fujikuroi, a fungus known to produce large amounts of gibberellins. By the molecular analysis, fungal isolate Lt-1-3-3 was identified as Gibberella intermedia, with 100% similarity.


Assuntos
Endófitos/classificação , Plantas Tolerantes a Sal/microbiologia , Alternaria/classificação , Alternaria/isolamento & purificação , Ascomicetos/classificação , Ascomicetos/isolamento & purificação , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética , Endófitos/isolamento & purificação , Fusarium/classificação , Fusarium/isolamento & purificação , Giberelinas , Oryza/crescimento & desenvolvimento , Oryza/microbiologia , Desenvolvimento Vegetal , Raízes de Plantas/microbiologia , RNA Ribossômico 5,8S/genética , República da Coreia , Plantas Tolerantes a Sal/crescimento & desenvolvimento , Áreas Alagadas
5.
Molecules ; 26(15)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34361696

RESUMO

The nutritional composition and productivity of halophytes is strongly related to the biotic/abiotic stress to which these extremophile salt tolerant plants are subjected during their cultivation cycle. In this study, two commercial halophyte species (Inula crithmoides and Mesembryanthemum nodiflorum) were cultivated at six levels of salinity using a soilless cultivation system. In this way, it was possible to understand the response mechanisms of these halophytes to salt stress. The relative productivity decreased from the salinities of 110 and 200 mmol L-1 upwards for I. crithmoides and M. nodiflorum, respectively. Nonetheless, the nutritional profile for human consumption remained balanced. In general, I. crithmoides vitamin (B1 and B6) contents were significantly higher than those of M. nodiflorum. For both species, ß-carotene and lutein were induced by salinity, possibly as a response to oxidative stress. Phenolic compounds were more abundant in plants cultivated at lower salinities, while the antioxidant activity increased as a response to salt stress. Sensory characteristics were evaluated by a panel of culinary chefs showing a preference for plants grown at the salt concentration of 350 mmol L-1. In summary, salinity stress was effective in boosting important nutritional components in these species, and the soilless system promotes the sustainable and safe production of halophyte plants for human consumption.


Assuntos
Inula/química , Inula/crescimento & desenvolvimento , Mesembryanthemum/química , Mesembryanthemum/crescimento & desenvolvimento , Valor Nutritivo , Salinidade , Plantas Tolerantes a Sal/química , Plantas Tolerantes a Sal/crescimento & desenvolvimento , Antioxidantes/farmacologia , Dieta Vegetariana , Humanos , Luteína/análise , Minerais/análise , Estresse Oxidativo , Fenóis/análise , Extratos Vegetais/farmacologia , Piridoxina/análise , Estresse Salino , Taninos/análise , Tiamina/análise , beta Caroteno/análise
6.
Int J Mol Sci ; 22(5)2021 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-33800795

RESUMO

Plant growth and development are challenged by biotic and abiotic stresses including salinity and heat stresses. For Populus simonii × P. nigra as an important greening and economic tree species in China, increasing soil salinization and global warming have become major environmental challenges. We aim to unravel the molecular mechanisms underlying tree tolerance to salt stress and high temprerature (HT) stress conditions. Transcriptomics revealed that a PsnNAC036 transcription factor (TF) was significantly induced by salt stress in P. simonii × P. nigra. This study focuses on addressing the biological functions of PsnNAC036. The gene was cloned, and its temporal and spatial expression was analyzed under different stresses. PsnNAC036 was significantly upregulated under 150 mM NaCl and 37 °C for 12 h. The result is consistent with the presence of stress responsive cis-elements in the PsnNAC036 promoter. Subcellular localization analysis showed that PsnNAC036 was targeted to the nucleus. Additionally, PsnNAC036 was highly expressed in the leaves and roots. To investigate the core activation region of PsnNAC036 protein and its potential regulatory factors and targets, we conducted trans-activation analysis and the result indicates that the C-terminal region of 191-343 amino acids of the PsnNAC036 was a potent activation domain. Furthermore, overexpression of PsnNAC036 stimulated plant growth and enhanced salinity and HT tolerance. Moreover, 14 stress-related genes upregulated in the transgenic plants under high salt and HT conditions may be potential targets of the PsnNAC036. All the results demonstrate that PsnNAC036 plays an important role in salt and HT stress tolerance.


Assuntos
Genes de Plantas , Resposta ao Choque Térmico/genética , Proteínas de Plantas/fisiologia , Populus/genética , Estresse Salino/genética , Plantas Tolerantes a Sal/genética , Fatores de Transcrição/fisiologia , Sequência de Aminoácidos , Clorofila/biossíntese , Cruzamentos Genéticos , Regulação da Expressão Gênica de Plantas , Temperatura Alta , Proteínas Nucleares/genética , Proteínas Nucleares/fisiologia , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Populus/fisiologia , Regiões Promotoras Genéticas/genética , Salinidade , Plantas Tolerantes a Sal/crescimento & desenvolvimento , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Frações Subcelulares/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Fatores de Transcrição/genética , Ativação Transcricional
7.
Artigo em Inglês | MEDLINE | ID: mdl-33631342

RESUMO

Mercury is one of the major pollutants in the ocean, selenium causes toxicity beyond a certain limit, but there are few comparative toxic studies between them in halophytes. The study was to investigate the toxic effects of selenium (Se4+) and mercury (Hg2+) in halophyte Suaeda salsa at the level of genes, proteins and metabolites after exposure for 7 days. By integrating the results of proteomics and metabolomics, the pathway changed under different treatments were revealed. In Se4+-treated group, the changed 3 proteins and 10 metabolites participated in the process of substance metabolism (amino acid, pyrimidine), citrate cycle, pentose phosphate pathway, photosynthesis, energy, and protein biosynthesis. In Hg2+-treated group, the changed 10 proteins and 10 metabolites were related to photosynthesis, glycolysis, substance metabolism (cysteine and methionine, amino acid, pyrimidine), ATP synthesis and binding, tolerance, sugar-phosphatase activity, and citrate cycle. In Se4++ Hg2+-treated group, the changed 5 proteins an 12 metabolites involved in stress defence, iron ion binding, mitochondrial respiratory chain, structural constituent of ribosome, citrate cycle, and amino acid metabolism. Furthermore, the separate and combined selenium and mercury both inhibited growth of S. salsa, enhanced activity of antioxidant enzymes (superoxide dismutase, peroxidase and catalase), and disturbed osmotic regulation through the genes of choline monoxygenase and betaine aldehyde dehydrogenase. Our experiments also showed selenium could induce synergistic effects in S. salsa. In all, we successfully characterized the effects of selenium and mercury in plant which was helpful to evaluate the toxicity and interaction of marine pollutants.


Assuntos
Chenopodiaceae/efeitos dos fármacos , Mercúrio/toxicidade , Proteínas de Plantas/metabolismo , Plantas Tolerantes a Sal , Selênio/toxicidade , Poluentes Químicos da Água/toxicidade , Chenopodiaceae/crescimento & desenvolvimento , Metabolômica , Plantas Tolerantes a Sal/efeitos dos fármacos , Plantas Tolerantes a Sal/crescimento & desenvolvimento
8.
Plant Sci ; 304: 110819, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33568309

RESUMO

The euhalophyte species Salicornia europaea is cultivated for oilseed and as a fodder crop in various parts of the world. In saline coastal environments it possesses great potential for the subsistence of the most disadvantaged farmers. We investigated the effect of salinity levels in irrigation water on the germination capacity, shoot biomass and seed productivity as well as diverse quality traits (nitrogen content in shoots and seeds and fatty acids, in seeds) and physiological traits (stable carbon and nitrogen isotopes and ion content) of two accessions collected in the United Arab Emirates (UAE). The three salinity levels tested were irrigation with fresh water (0.3 dS m-1), brackish water (25 dS m-1) and sea water (40 dS m-1). In addition, a hypersaline condition (80 dS m-1) was also tested for germination. The best germination rates were achieved with seeds exposed to fresh and brackish water, while imbibition with sea water decreased germination by half and hypersaline water inhibited it almost totally. However, the best irrigation regime in terms of biomass and seed yield involved brackish water. Moreover, rising salinity in the irrigation increased the stable isotope composition of carbon (δ13C) and nitrogen (δ15N), together with the Na+ and K+ of shoots and seeds, and the lipid levels of seeds, while the total nitrogen content and the profile of major fatty acids of seeds did not change. Differences between the two ecotypes existed for growth and seed yield with the best ecotype exhibiting lower δ13C and higher K+ in both shoots and seeds, lower Na+ and higher δ15N in shoots, and lower N in seeds, together with differences in major fatty acids. Physiological mechanisms behind the response to irrigation salinity and the ecotypic differences are discussed in terms of photosynthetic carbon and nitrogen metabolism.


Assuntos
Chenopodiaceae/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento , Irrigação Agrícola , Carbono/metabolismo , Chenopodiaceae/metabolismo , Chenopodiaceae/fisiologia , Ecótipo , Ácidos Graxos/metabolismo , Germinação , Nitrogênio/metabolismo , Salinidade , Estresse Salino , Plantas Tolerantes a Sal/crescimento & desenvolvimento , Plantas Tolerantes a Sal/metabolismo , Plantas Tolerantes a Sal/fisiologia , Sementes/metabolismo , Sementes/fisiologia
9.
J Microbiol Biotechnol ; 31(3): 408-418, 2021 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-33397833

RESUMO

The diversity and plant growth-promoting ability of fungal endophytes that are associated with five halophytic plant species (Phragmites australis, Suaeda australis, Limonium tetragonum, Suaeda glauca Bunge, and Suaeda maritima) growing in the Buan salt marsh on the west coast of South Korea have been explored. About 188 fungal strains were isolated from these plant samples' roots and were then studied with the use of the internal transcribed spacer (ITS) region (ITS1-5.8S-ITS2). The endophytic fungal strains belonged to 33 genera. Alternaria (18%) and Fusarium (12.8%), of the classes Dothideomycetes and Sordariomycetes, were most rampant in the coastal salt marsh plants. There was a higher diversity in fungal endophytes that are isolated from S. glauca Bunge than in isolates from other coastal salt marsh plants. Plant growth-promoting experiments with the use of Waito-C rice seedlings show that some of the fungal strains could encourage a more efficient growth than others. Furthermore, gibberellins (GAs) GA1, GA3, and GA9 were seen in the Sa-1-4-3 isolate (Acrostalagmus luteoalbus) culture filtrate with a gas chromatography/mass spectrometry.


Assuntos
Alternaria , Endófitos/classificação , Fusarium , Plantas Tolerantes a Sal/microbiologia , Áreas Alagadas , Alternaria/classificação , Alternaria/isolamento & purificação , Ascomicetos/metabolismo , Biodiversidade , DNA Fúngico/genética , Endófitos/isolamento & purificação , Fusarium/classificação , Fusarium/isolamento & purificação , Giberelinas/metabolismo , Oryza/microbiologia , Filogenia , Reguladores de Crescimento de Plantas , Raízes de Plantas/microbiologia , Reação em Cadeia da Polimerase , República da Coreia , Plantas Tolerantes a Sal/crescimento & desenvolvimento , Análise de Sequência de DNA , Simbiose
10.
Molecules ; 27(1)2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-35011260

RESUMO

Halophytes have been characterized as a potential resource for fiber, food, fodder, and bioactive compounds. Proximate composition, bioactive compounds, and antioxidant activity of five wild dominant halophytes (Arthrocnemummacrostachyum, Halocnemumstrobilaceum, Limoniastrummonopetalum, Limoniastrumpruinosum, and Tamarix nilotica) naturally growing along the Nile Delta coast were assessed. The soil supporting these halophytes was sandy to sand-silty, alkaline, with low organic carbon, and relatively high CaCO3. H. strobilaceum attained the highest moisture content, ash, crude fiber, lipids, and total soluble sugars. L. monopetalum showed the highest content of crude protein (18.00%), while T. nilotica had the highest content of total carbohydrates. The studied halophytes can be ranked according to their nutritive value as follows: H.strobilaceum > L.monopetalum > A.macrostachyum > L.pruinosum > T. nilotica. A. macrostachyum attained the highest amount of Na+, K+, Ca2+, and Mg2+. A. macrostachyum showed a high content of phenolic compounds, while H.strobilaceum was rich in tannins and saponin contents. The MeOH extract of A. macrostachyum and H. strobilaceum exhibited substantial antioxidant activity. The present results showed that the studied halophytes could be considered as candidates for forage production or used as green eco-friendly natural resources for bioactive compounds.


Assuntos
Antioxidantes/química , Antioxidantes/farmacologia , Ecossistema , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Plantas Tolerantes a Sal/química , Geografia , Fenótipo , Plantas Tolerantes a Sal/crescimento & desenvolvimento , Plantas Tolerantes a Sal/metabolismo , Metabolismo Secundário , Solo/química
11.
Microbiol Res ; 242: 126616, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33115624

RESUMO

Rice (Oryza sativa L.) growth and productivity has been negatively affected due to high soil salinity. However, some salt-tolerant plant growth-promoting bacteria (ST-PGPB) enhance crop growth and reduce the negative impacts of salt stress through regulation of some biochemical, physiological, and molecular features. Total thirty six ST-PGPB were isolated from sodic soil of eastern Uttar Pradesh, India, and screened for salt tolerance at different salt (NaCl) concentrations up to 2000 millimolar (mM). Out of thirty-six, thirteen strains indicated better growth and plant growth properties (PGPs) in NaCl amended medium. Among thirteen, one most effective Bacillus pumilus strain JPVS11 was molecularly characterized, which showed potential PGPs, such as indole-3-acetic acid (IAA),1-aminocyclo propane-1-carboxylicacid (ACC) deaminase activity, P-solubilization, proline accumulation and exopolysaccharides (EPS) production at different concentrations of NaCl (0 -1200 mM). Pot experiment was conducted on rice (Variety CSR46) at different NaCl concentrations (0, 50, 100, 200, and 300 mM) with and without inoculation of Bacillus pumilus strain JPVS11. At elevated concentrations of NaCl, the adverse effects on chlorophyll content, carotenoids, antioxidant activity was recorded in non-inoculated (only NaCl) plants. However, inoculation of Bacillus pumilus strain JPVS11 showed positive adaption and improve growth performance of rice as compared to non-inoculated in similar conditions. A significant (P < 0.05) enhancement plant height (12.90-26.48%), root length (9.55-23.09%), chlorophyll content (10.13-27.24%), carotenoids (8.38-25.44%), plant fresh weight (12.33-25.59%), and dry weight (8.66-30.89%) were recorded from 50 to 300 mM NaCl concentration in inoculated plants as compared to non-inoculated. Moreover, the plants inoculated with Bacillus pumilus strain JPVS11showed improvement in antioxidant enzyme activities of catalase (15.14-32.91%) and superoxide dismutase (8.68-26.61%). Besides, the significant improvement in soil enzyme activities, such as alkaline phosphatase (18.37-53.51%), acid phosphatase (28.42-45.99%), urease (14.77-47.84%), and ß-glucosidase (25.21-56.12%) were recorded in inoculated pots as compared to non-inoculated. These results suggest that Bacillus pumilus strain JPVS11 is a potential ST-PGPB for promoting plant growth attributes, soil enzyme activities, microbial counts, and mitigating the deleterious effects of salinity in rice.


Assuntos
Bacillus pumilus/fisiologia , Oryza/crescimento & desenvolvimento , Oryza/microbiologia , Desenvolvimento Vegetal , Estresse Salino/fisiologia , Plantas Tolerantes a Sal/crescimento & desenvolvimento , Plantas Tolerantes a Sal/microbiologia , Solo/química , Antioxidantes , Bacillus pumilus/classificação , Bacillus pumilus/genética , Bacillus pumilus/isolamento & purificação , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Clorofila , Cianeto de Hidrogênio/metabolismo , Ácidos Indolacéticos , Fixação de Nitrogênio , Fosfatos/metabolismo , Prolina/metabolismo , Salinidade , Tolerância ao Sal/fisiologia , Sementes/microbiologia , Sideróforos/metabolismo , Microbiologia do Solo , Estresse Fisiológico
12.
Plant Sci ; 302: 110704, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33288017

RESUMO

Arabidopsis thaliana TRY is a negative regulator of trichome differentiation that promotes root hair differentiation. Here, we established that LbTRY, from the recretohalophyte Limonium bicolor, is a typical MYB transcription factor that exhibits transcriptional activation activity and locates in nucleus. By in situ hybridization in L. bicolor, LbTRY may be specifically positioned in salt gland of the expanded leaves. LbTRY expression was the highest in mature leaves and lowest under NaCl treatment. For functional assessment, we heterologously expressed LbTRY in wild-type and try29760 mutant Arabidopsis plants. Epidermal differentiation was remarkably affected in the transgenic wild-type line, as was increased root hair development. Complementation of try29760 with LbTRY under both 35S and LbTRY specific promoter restored the wild-type phenotype. qRT-PCR analysis suggested that AtGL3 and AtZFP5 promote root hair cell fate in lines heterologously producing LbTRY. In addition, four genes (AtRHD6, AtRSL1, AtLRL2, and AtLRL3) involved in root hair initiation and elongation were upregulated in the transgenic lines. Furthermore, LbTRY specifically increased the salt sensitivity of the transgenic lines. The transgenic and complementation lines showed poor germination rates and reduced root lengths, whereas the mutant unexpectedly fared the best under a range of NaCl treatments. Under salt stress, the transgenic seedlings accumulated more MDA and Na+ and less proline and soluble sugar than try29760. Thus, when heterologously expressed in Arabidopsis, LbTRY participates in hair development, similar to other MYB proteins, and specifically reduces salt tolerance by increasing ion accumulation and reducing osmolytes. The expression of salt-tolerance marker genes (SOS1, SOS2, SOS3 and P5CS1) was significant reduced in the transgenic lines. More will be carried by downregulating expression of TRY homologs in crops to improve salt tolerance.


Assuntos
Osmorregulação/genética , Proteínas de Plantas/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Plumbaginaceae/genética , Proteínas Proto-Oncogênicas c-myb/fisiologia , Plantas Tolerantes a Sal/genética , Arabidopsis , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Hibridização In Situ , Osmorregulação/fisiologia , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia , Plantas Geneticamente Modificadas , Plumbaginaceae/crescimento & desenvolvimento , Plumbaginaceae/metabolismo , Plumbaginaceae/fisiologia , Proteínas Proto-Oncogênicas c-myb/genética , Proteínas Proto-Oncogênicas c-myb/metabolismo , Tolerância ao Sal , Plantas Tolerantes a Sal/crescimento & desenvolvimento , Plantas Tolerantes a Sal/metabolismo , Plantas Tolerantes a Sal/fisiologia
13.
PLoS One ; 15(9): e0238537, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32886707

RESUMO

In this study, we characterized, identified, and determined the effect of salt-tolerant PGPR isolated from coastal saline areas on rice growth and yield. A total of 44 bacterial strains were isolated, and 5 were found to be tolerant at high salt concentration. These isolates were further characterized for salinity tolerance and beneficial traits through a series of quantitative tests. Biochemical characterization showed that bacterial survivability decreases gradually with the increase of salt concentration. One of the strains, UPMRB9, produced the highest amount of exopolysaccharides when exposed to 1.5M of NaCl. Moreover, UPMRB9 absorbed the highest amount of sodium from the 1.5M of NaCl-amended media. The highest floc yield and biofilm were produced by UPMRE6 and UPMRB9 respectively, at 1M of NaCl concentration. The SEM observation confirmed the EPS production of UPMRB9 and UPMRE6 at 1.5M of NaCl concentration. These two isolates were identified as Bacillus tequilensis and Bacillus aryabhattai based on the 16S rRNA gene sequence. The functional group characterization of EPS showed the presence of hydroxyl, carboxyl, and amino groups. This corresponded to the presence of carbohydrates and proteins in the EPS and glucose was identified as the major type of carbohydrate. The functional groups of EPS can help to bind and chelate Na+ in the soil and thereby reduces the plant's exposure to the ion under saline conditions. The plant inoculation study revealed significant beneficial effects of bacterial inoculation on photosynthesis, transpiration, and stomatal conductance of the plant which leads to a higher yield. The Bacillus tequilensis and Bacillus aryabhattai strains showed good potential as PGPR for salinity mitigation practice for coastal rice cultivation.


Assuntos
Bacillus/fisiologia , Oryza/crescimento & desenvolvimento , Oryza/microbiologia , Tolerância ao Sal , Bacillus/isolamento & purificação , Bactérias/isolamento & purificação , Fenômenos Fisiológicos Bacterianos , Biofilmes , Oryza/fisiologia , Rizosfera , Salinidade , Plantas Tolerantes a Sal/crescimento & desenvolvimento , Plantas Tolerantes a Sal/microbiologia , Plantas Tolerantes a Sal/fisiologia
14.
Ecotoxicol Environ Saf ; 205: 111293, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32949840

RESUMO

Wastewater from printing and dyeing processes often contains aniline and high salinity, which are hazardous to aquatic species. Glycophytic plants cannot survive under high-salinity conditions, whereas halophytes grow well in such an environment. In this study, we investigated the influence of NaCl on the antioxidant level in Suaeda salsa affected by aniline stress. The seedlings showed various growth toxicity effects under different concentrations of aniline. The results showed that the effect of the aniline was more severe for the root growth compared to that for the shoot growth. Aniline exposure significantly increased the total free radicals and ·OH radicals in the plants. Suaeda salsa exposure to aniline caused oxidative stress by altering the superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) activity, which resulted in the overproduction of H2O2 and the inducement of lipid peroxidation. Analysis revealed that the malondialdehyde (MDA) content was enhanced after aniline exposure and that the chlorophyll content was significantly decreased. The results showed that aniline induced the production of free radicals and reactive oxygen species (ROS), and changed the antioxidant defense system. This ultimately resulted in oxidative damage in S. salsa; however, it was found that moderate salinity could mitigate the effects. In conclusion, salinity may alleviate the growth inhibition caused by aniline by regulating the antioxidant capacity of S. salsa.


Assuntos
Compostos de Anilina/toxicidade , Antioxidantes/metabolismo , Chenopodiaceae/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Cloreto de Sódio/farmacologia , Poluentes Químicos da Água/toxicidade , Catalase/metabolismo , Chenopodiaceae/enzimologia , Chenopodiaceae/crescimento & desenvolvimento , Clorofila/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Peróxido de Hidrogênio/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Malondialdeído/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Salinidade , Plantas Tolerantes a Sal/efeitos dos fármacos , Plantas Tolerantes a Sal/enzimologia , Plantas Tolerantes a Sal/crescimento & desenvolvimento , Plântula/efeitos dos fármacos , Plântula/enzimologia , Plântula/crescimento & desenvolvimento , Superóxido Dismutase/metabolismo
15.
Sci Rep ; 10(1): 14857, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32908201

RESUMO

Plant growth promoting rhizobacteria (PGPR) are able to provide cross-protection against multiple stress factors and facilitate growth of their plant symbionts in many ways. The aim of this study was to isolate and characterize rhizobacterial strains under natural conditions, associated with naturally occurring representatives of wild plant species and a local tomato cultivar, growing in differently stressed Mediterranean ecosystems. A total of 85 morphologically different rhizospheric strains were isolated; twenty-five exhibited multiple in vitro PGP-associated traits, including phosphate solubilization, indole-3-acetic acid production, and 1-aminocyclopropane-1-carboxylate deaminase activity. Whole genome analysis was applied to eight selected strains for their PGP potential and assigned seven strains to Gammaproteobacteria, and one to Bacteroidetes. The genomes harboured numerous genes involved in plant growth promotion and stress regulation. They also support the notion that the presence of gene clusters with potential PGP functions is affirmative but not necessary for a strain to promote plant growth under abiotic stress conditions. The selected strains were further tested for their ability to stimulate growth under stress. This initial screening led to the identification of some strains as potential PGPR for increasing crop production in a sustainable manner.


Assuntos
Secas , Raízes de Plantas/microbiologia , Rizosfera , Plantas Tolerantes a Sal , Solanum lycopersicum , Bacteroidetes/fisiologia , Gammaproteobacteria/fisiologia , Grécia , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/microbiologia , Microbiota , Reguladores de Crescimento de Plantas/metabolismo , Plantas Tolerantes a Sal/crescimento & desenvolvimento , Plantas Tolerantes a Sal/microbiologia , Microbiologia do Solo
16.
Genes Genomics ; 42(11): 1239-1249, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32939614

RESUMO

BACKGROUND: Salinity stress, as the key limiting factor for agricultural productivity, can activate a series of molecular responses and alter gene expression in plants. Endogenous regulatory small RNAs, such as microRNAs (miRNAs) and phased siRNAs (phasiRNAs), play crucial roles during stress adaptation and prevent the injury from environmental circumstances. OBJECTIVE: To identify long-term salt stress responsive miRNAs and phasiRNAs as well as their associated genes and pathways in soybean roots. METHODS: Small RNA and degradome sequencing strategies were applied to genome widely investigate miRNAs and phasiRNAs in soybean roots under control and long-term salt stress conditions. RESULTS: In this study, stringent bioinformatic analysis led to the identification of 253 conserved and 38 novel miRNA candidates. Results of expression profiling, target and endogenous target mimics predictions provided valuable clues to their functional roles. Furthermore, 156 genes were identified to be capable of generating 21 nt and 24 nt phasiRNAs, in which 37 candidates were confirmed by degradome data for miRNA-directed cleavage. Approximately 90% of these phasiRNA loci were protein coding genes. And GO enrichment analysis pointed to "signal transduction" and "ADP binding" entries and reflected the functional roles of identified phasiRNA genes. CONCLUSION: Taken together, our findings extended the knowledge of salt responsive miRNAs and phasiRNAs in soybean roots, and provided valuable information for a better understanding of the regulatory events caused by small RNAs underlying plant adaptations to long-term salt stress.


Assuntos
Glycine max/genética , MicroRNAs/genética , RNA Interferente Pequeno/genética , Estresse Salino/genética , Genoma de Planta/genética , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Plantas Tolerantes a Sal/genética , Plantas Tolerantes a Sal/crescimento & desenvolvimento , Glycine max/crescimento & desenvolvimento
17.
Commun Biol ; 3(1): 513, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32943738

RESUMO

Halophytes are plants that grow in high-salt environments and form characteristic epidermal bladder cells (EBCs) that are important for saline tolerance. To date, however, little has been revealed about the formation of these structures. To determine the genetic basis for their formation, we applied ethylmethanesulfonate mutagenesis and obtained two mutants with reduced levels of EBCs (rebc) and abnormal chloroplasts. In silico subtraction experiments revealed that the rebc phenotype was caused by mutation of REBC, which encodes a WD40 protein that localizes to the nucleus and chloroplasts. Phylogenetic and transformant analyses revealed that the REBC protein differs from TTG1, a WD40 protein involved in trichome formation. Furthermore, rebc mutants displayed damage to their shoot apices under abiotic stress, suggesting that EBCs may protect the shoot apex from such stress. These findings will help clarify the mechanisms underlying EBC formation and function.


Assuntos
Chenopodium quinoa/genética , Tolerância ao Sal/genética , Plantas Tolerantes a Sal/genética , Repetições WD40/genética , Chenopodium quinoa/crescimento & desenvolvimento , Chenopodium quinoa/metabolismo , Cloroplastos/genética , Células Epidérmicas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Filogenia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Salinidade , Plantas Tolerantes a Sal/crescimento & desenvolvimento , Plantas Tolerantes a Sal/metabolismo , Estresse Fisiológico/genética
18.
Plant Cell Environ ; 43(12): 2932-2956, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32744336

RESUMO

Salinization of land is likely to increase due to climate change with impact on agricultural production. Since most species used as crops are sensitive to salinity, improvement of salt tolerance is needed to maintain global food production. This review summarises successes and failures of transgenic approaches in improving salt tolerance in crop species. A conceptual model of coordinated physiological mechanisms in roots and shoots required for salt tolerance is presented. Transgenic plants overexpressing genes of key proteins contributing to Na+ 'exclusion' (PM-ATPases with SOS1 antiporter, and HKT1 transporter) and Na+ compartmentation in vacuoles (V-H+ ATPase and V-H+ PPase with NHX antiporter), as well as two proteins potentially involved in alleviating water deficit during salt stress (aquaporins and dehydrins), were evaluated. Of the 51 transformations, with gene(s) involved in Na+ 'exclusion' or Na+ vacuolar compartmentation that contained quantitative data on growth and include a non-saline control, 48 showed improvements in salt tolerance (less impact on plant mass) of transgenic plants, but with only two tested in field conditions. Of these 51 transformations, 26 involved crop species. Tissue ion concentrations were altered, but not always in the same way. Although glasshouse data are promising, field studies are required to assess crop salinity tolerance.


Assuntos
Produtos Agrícolas/genética , Plantas Geneticamente Modificadas/genética , Plantas Tolerantes a Sal/genética , Produção Agrícola/métodos , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/fisiologia , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/fisiologia , Tolerância ao Sal/genética , Tolerância ao Sal/fisiologia , Plantas Tolerantes a Sal/crescimento & desenvolvimento , Plantas Tolerantes a Sal/fisiologia
19.
Food Chem ; 333: 127536, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32707417

RESUMO

Some halophyte plants are currently used in gourmet cuisine due to their unique organoleptic properties. Moreover, they exhibit excellent nutritional and functional properties, being rich in polyphenolics and vitamins. These compounds are associated to strong antioxidant activity and enhanced health benefits. This work compared the nutritional properties and antioxidant potential of three species (Mesembryanthemum nodiflorum, Suaeda maritima and Sarcocornia fruticosa) collected in saltmarshes from Portugal and Spain with those of cultivated plants. The latter were generally more succulent and had higher contents of minerals than plants obtained from the wild and contained less fibre. All species assayed are a good source of proteins, fibres and minerals. Additionally, they are good sources of carotenoids and vitamins A, C and B6 and showed good antioxidant potential particularly S. maritima. Chromatographic analysis of the phenolic profile revealed that ferulic and caffeic acids as the most relevant phenolic compounds detected in the halophytes tested.


Assuntos
Valor Nutritivo , Plantas Tolerantes a Sal/crescimento & desenvolvimento , Plantas Tolerantes a Sal/metabolismo , Antioxidantes/metabolismo , Chenopodiaceae/crescimento & desenvolvimento , Chenopodiaceae/metabolismo , Fenóis/metabolismo
20.
Int J Mol Sci ; 21(15)2020 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-32722526

RESUMO

Potassium retention under saline conditions has emerged as an important determinant for salt tolerance in plants. Halophytic Hordeum brevisubulatum evolves better strategies to retain K+ to improve high-salt tolerance. Hence, uncovering K+-efficient uptake under salt stress is vital for understanding K+ homeostasis. HAK/KUP/KT transporters play important roles in promoting K+ uptake during multiple stresses. Here, we obtained nine salt-induced HAK/KUP/KT members in H. brevisubulatum with different expression patterns compared with H. vulgare through transcriptomic analysis. One member HbHAK1 showed high-affinity K+ transporter activity in athak5 to cope with low-K+ or salt stresses. The expression of HbHAK1 in yeast Cy162 strains exhibited strong activities in K+ uptake under extremely low external K+ conditions and reducing Na+ toxicity to maintain the survival of yeast cells under high-salt-stress. Comparing with the sequence of barley HvHAK1, we found that C170 and R342 in a conserved domain played pivotal roles in K+ selectivity under extremely low-K+ conditions (10 µM) and that A13 was responsible for the salt tolerance. Our findings revealed the mechanism of HbHAK1 for K+ accumulation and the significant natural adaptive sites for HAK1 activity, highlighting the potential value for crops to promote K+-uptake under stresses.


Assuntos
Regulação da Expressão Gênica de Plantas/fisiologia , Hordeum/crescimento & desenvolvimento , Potássio/metabolismo , Tolerância ao Sal/fisiologia , Plantas Tolerantes a Sal/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA